M1.(a) Silicon / Si
If not silicon then $C E=0 / 3$
covalent (bonds)
M3 dependent on correct M2

Strong or many of the (covalent) bonds need to be broken / needs a lot of energy to break the (covalent) bonds

Ignore hard to break
(b) Argon / Ar If not argon then $C E=0 / 3$. But if Kr chosen, lose M1 and allow M2+M3

Large(st) number of protons / large(st) nuclear charge Ignore smallest atomic radius

Same amount of shielding / same number of shells / same number of energy levels

Allow similar shielding
(c) Chlorine / Cl

Not Cl_{2}, Not CL, Not Cll ${ }^{2}$
(d) (i)

Or any structure with 3 bonds and 2 lone pairs Ignore any angles shown

Or a structure with 2 bonds and 1 lone pair
(ii) Bent / v shape

Ignore non-linear, angular and triangular Apply list principle
(iii) $\frac{1}{2} \mathrm{Cl}_{2}+\frac{3}{2} \mathrm{~F}_{2} \longrightarrow \mathrm{CIF}_{3}$

No multiples
Ignore state symbols

M2.(a) Al $+1.5 \mathrm{Cl}_{2} \rightarrow \mathrm{AlCl}_{3}$
Accept multiples.
Also $2 \mathrm{Al}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{Cl}_{6}$
Ignore state symbols.
(b) Coordinate / dative (covalent)

If wrong $C E=0 / 2$ if covalent mark on.

Electron pair on Cl - donated to $\mathrm{Al}\left(\mathrm{Cl}_{3}\right)$

QoL
Lone pair from Cl^{-}not just Cl
Penalise wrong species.
(c) $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ or AlBr_{3}

Allow $\mathrm{Br}_{3} \mathrm{Al}$ or $\mathrm{Cl}_{8} \mathrm{Al}_{2}$
Upper and lower case letters must be as shown. Not $2 \mathrm{AlCl}_{3}$
(d) $\mathrm{SiCl}_{4} /$ silicon tetrachloride

Accept silicon(4) chloride or silicon(IV) chloride.
Upper and lower case letters must be as shown.
Not silicon chloride.
(e)

Accept shape containing 5 bonds and no lone pairs from TI to each of 5 Br atoms.
Ignore charge.

Trigonal bipyramid(al)
(f) (i) $\mathrm{Cl}-\mathrm{Tl}-\mathrm{Cl}$

Accept this linear structure only with no lone pair on TI
(ii) (Two) bonds (pairs of electrons) repel equally / (electrons in) the bonds repel to be as far apart as possible

Dependent on linear structure in (f)(i).
Do not allow electrons / electron pairs repel alone.
(g) Second

M3.(a)

Mark is for correct number of bonds and lone pair in each case.
Ignore charges if shown.

Pyramidal / trigonal pyramid
Allow tetrahedral.
107°
Allow 107 to 107.5°.
(b) M1 Ionic
$C E=0 / 3$ if not ionic.

M2 Oppositely charged ions / Tl^{+}and Br^{-}ions
If molecules / intermolecular forces / metallic bonding, $C E=0$.

M3 Strong attraction between ions
M3 dependent on M2.
Allow 'needs a lot of energy to break / overcome' instead of 'strong'.
(c) $\mathrm{TI}+\frac{1}{2} \mathrm{Br}_{2} \longrightarrow \mathrm{TIBr}$

Allow multiples.

M4.(a) $\quad 94-105.5^{\circ}$
(b) (i) Hydrogen bond(ing) / H bonding / H bonds Not just hydrogen
(ii)

OR

1 mark for all lone pairs
1 mark for partial charges on the O and the H that are involved in H bonding
1 mark for the H-bond, from $H \delta+$ on one molecule to lone pair on O of other molecule
(c) Electronegativity of S lower than O or electronegativity difference between H and S is lower

Mark independently

No hydrogen bonding between $\mathrm{H}_{2} \underline{\mathrm{~S}}_{2}$ molecules
Or only van der Waals / only dipole-dipole forces between $\mathrm{H}_{2} \underline{\mathrm{~S}}_{2} \underline{\text { molecules }}$ If breaking covalent bonds $C E=0$

M5. (a) $\quad \mathrm{C}(\mathrm{s})+2 \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CF}_{4}(\mathrm{~g})$
State symbols essential
(b) Around carbon there are 4 bonding pairs of electrons (and no lone pairs)

Therefore, these repel equally and spread as far apart as possible
(c) $\Delta H=\Sigma \Delta_{i} H$ products $-\Sigma \Delta_{i} H$ reactants or a correct cycle

$$
\text { Hence }=(2 \times-680)+(6 \times-269)-(x)=-2889
$$

$$
x=2889-1360-1614=-85\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

Score 1 mark only for $+85\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(d) Bonds broken $=4(\mathrm{C}-\mathrm{H})+4(\mathrm{~F}-\mathrm{F})=4 \times 412+4 \times \mathrm{F}-\mathrm{F}$

Bonds formed $=4(\mathrm{C}-\mathrm{F})+4(\mathrm{H}-\mathrm{F})=4 \times 484+4 \times 562$
Both required

$$
\begin{aligned}
& -1904=[4 \times 412+4(F-F)]-[4 \times 484+4 \times 562] \\
& 4(F-F)=-1904-4 \times 412+[4 \times 484+4 \times 562]=632
\end{aligned}
$$

$$
\mathrm{F}-\mathrm{F}=632 / 4=158\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

M6.(a) This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.

All stages are covered and the explanation of each stage is generally correct and virtually complete.

Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 then stage 3 .

Level 3
5-6 marks

All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete.

Answer is mainly coherent and shows progression from stage 1 to stage 3 .

Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete

Answer includes isolated statements but these are not presented in a logical order or show confused reasoning.

Level 1
1-2 marks
Insufficient correct chemistry to gain a mark.

Indicative chemistry content

Stage 1: Electrons round P

- $\quad \mathrm{P}$ has 5 electrons in the outside shell
- With 3 electrons from 3 fluorine, there are a total of 8 electrons in outside shell
- so 3 bond pairs, 1 non-bond pair

Stage 2: Electron pair repulsion theory

- Electron pairs repel as far as possible
- Lone pair repels more than bonding pairs

Stage 3: Conclusions

- Therefore, tetrahedral / trigonal pyramidal shape
- With angle of $109(.5)^{\circ}$ decreased to 107°
(b) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{7}$

Allow correct numbers that are not superscripted
(c) Too many electrons in d sub-shell / orbitals
(d) Tetrahedral (shape)
109.5°
Allow 109°

